Grid User Management System
v.0.7.1

Project Documentation

BNL siteAAA 01 February 2005 14:11 EST

TABLE OF CONTENTS i

Table of Contents

Manual
INtrOdUCHIONo 1
How to: quick installation 4
Installation guide 9
CoNfIQUIALIONo 15
QUMS.CONTIg . . . o 16
db.properties 23
NOSES.CONT . . 24
Commands: GUMS AdMIN oo e 25
LOgOING .« ottt 27
Logging implementation 29
11 =T = U1 T o 31
OPeratioN MOGESot e 34
FAQ . o 36
ChaNges . . . 39

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2003 BNL SITEAAA

ALL RIGHTS RESERVED

11

1.1 INTRODUCTION 1

Introduction

What does GUMS provide?

In this article we describe what GUMS is, what functionalities is going to provide to a site and how does it fit in the GRID
architecture. We'll also give a brief history of GUMS. The reader by the end will have a general idea of GUMS and will be
able to decide whether or not the tool is a match for their needs.

What GUMS is

GUMS performs one and just one function: mapping grid certificates to local identities (i.e. UNIX
account). For example, a job comes to a site with a GRID credential (the PROXY certificate). The site
resource, the gatekeeper, will need to map the GRID credential to the site credential under which the job
will actually be running. GUMS is a service that provide that mapping: tells you which site user the GRID
user should be using.

Notice that it doesn't authenticate for you: it doesn't 'su', it doesn't retrieve Kerberos credentials. It just
tells the gatekeeper which site credentials should get. The gatekeeper is still in charge of enforcing the site
mapping established by GUMS. Technically speaking, it's a Policy Decision Point (PDP) not a Policy
Enforcement Point (PEP). GUMS provide a web service door to generate grid-mapfile or to map users
one at a time. The first is used by a command line tool to retrieve grid-mapfiles that can be installed on
each gatekeeper as a cron job; the latter is used by a gatekeeper callout module which is used instead of
the grid-mapfile. Though the first tool is provided by the "GUMS Host tools" package, we refer to
GUMS as the service that maintains the mapping.

GUMS interface for the callout is being implemented according to standards discussed at GGF. The
existence of this interface means that any kind of service is able to contact GUMS: even though we are
working on a GT2 gatekeeper callout, the same service can be used for a GT4 service, or a different type
of service altogether.

Mapping in GUMS

The mappings in GUMS are defined defined by a single XML policy file. Within the policy the
administrator can specify which policy to use to map different groups of users, and on which hosts to use
the mapping. For example, one can specify "on 'atlas*.bnl.org' I want to allow all the USATLAS users,
taken from the ATLAS VOMS setver, and map them to a group account named 'usatlas01'; on those
same hosts I also want to allow all the ATLAS users mapped to accounts taken from a site pool of
accounts".

GUMS allows to be extended to meet the specific site services and requirements. All GUMS policy
components (i.e. user group definition, mapping policies, ...) are implementation of a few simple
interfaces, which implementation is not coupled to GUMS. This means that, with very little knowledge of
GUMS itself, a site admin can write an extra piece of code that, for example, performs the mapping

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.1 INTRODUCTION 2

according to the information present on a site service, or decide to keep GUMS data stored in their
LDAP system.

The components already implemented in GUMS allow you to:

* Retrieve membership information from VO server such as LDAP and VOMS.

* Keep a manual group definition, useful to handle special cases

* Map groups of users to the same account (Group account)

* Map groups of users to an account pool, one account will be assigned to each user
* Map groups of users according to the information present in NIS

* Map groups of users according to a manual mapping definition, useful to handle special cases

The development of GUMS

GUMS was first designed by Rich Baker and Dantong Yu at BNL in the first half of 2003. A first
implementation was provided by Tomasz Wlodek and Dantong Yu. Gabriele Carcassi took over the
project in March 2004 and brought the system into full production at BNL in May 2004. Between June
and July the code was refactored to allow the business logic to be called either from command line or
from a web application, opening the door to a web service implementation.

Current work is going toward a web application that would provide both a web interface for the
administrator and a web service that implement the OGSA AuthZ interface. This is done within the
Privilege Project, a joint project between USCMS and USATLAS.

GUMS in the future

The need to map to local identities might, in the future, go away. The grid community, and especially the
security groups, are pushing toward a model in which a GRID job would only be able to access any other
service through GRID credentials. Also, a job would not be allowed to leave any trace of its passage. In
fact, all traces might be wiped out. With that in mind, the particular user to which the job would be
mapped would become less important. Right now, though, many authorizations decisions are still done
through the username and uid.

The following is an incomplete list of authorizations that will need to be addressed before local account
mapping becomes irrelevant:

* Access control on files. If file access for all inputs and outputs of a job would go through an interface
with grid authorization, say an SRM, than whether a job was mapped to a particular account wouldn't
affect file access privileges. As long as we use directly UNIX file systems for storage, local account
mappings are crucial.

* Priority on a batch system. Many batch systems use uids and gids to determine submission rights to
queues or to determine priorities across users. Batch system interfaces that makes decisions only on
GRID credentials would be needed.

* Identify running processes. The easiest way to track process running on a host is to look at the
username under which is running. A mechanism would be needed to easily go back from process id
to a GRID identity

As long as those needs are there, there will be a need to keep a mapping, and there will be a need to keep

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.1 INTRODUCTION 3

that mapping consistent and under control across the site. GUMS will be there to satisfy that need.
Comparison with other tools

Some people might get confused between GUMS, VOMS, SAZ, LCMAPS and other siteAAA tools. We
keep a brief comparison within our FAQ.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2

1.2 HOW TO: QUICK INSTALLATION 4

How to: quick installation

HOW TO: GUMS Service quick-start installation

This article describes how to quickly install a GUMS service, without going through many of the details.

Prepare the database

The first to do is to prepare the database. There is currently no script to do it: it's something we plan on

doing.

You will need a mysql server, with version 4.0.18 or greater installed. You can either install one from
scratch (follow the instruction on mysql's site) or you can use an installation you have ready. Log in as
root and run the following script (cut and paste from this page):

CREATE DATABASE GUVS_0_7;

GRANT ALL
ON GUMS_0_7.*
TO gunms @ <gunsserver. site.gov>" | DENTI FI ED BY ' <password>';

USE GUMB_0_7;

CREATE TABLE User (
user | D | NTEGER AUTO_| NCREMENT PRI MARY KEY,
user DN VARCHAR(255) NOT NULL,
user FQAN VARCHAR(255) DEFAULT NULL,
regi strationDate DATETI ME NOT NULL,
renoval Dat e DATETI ME DEFAULT NULL,
user G oup VARCHAR(255) NOT NULL

)

CREATE TABLE User Account Mappi ng (
mappi ngl D | NTEGER NOT NULL,
user DN VARCHAR(255) DEFAULT NULL,
account VARCHAR(31) NOT NULL,
start Dat e DATETI ME DEFAULT NULL,
endDat e DATETI ME DEFAULT NULL,
user Group VARCHAR(255) NOT NULL

)

CREATE TABLE Host Gri dMapfile (

mapfil el D | NTEGER AUTO | NCREMENT PRI MARY KEY,
host name VARCHAR(255) NOT NULL,

mapFi | e MEDI UMTEXT NOT NULL

)

CREATE TABLE Host Gri d3User VoMap (
mapfil el D | NTEGER AUTO | NCREMENT PRI MARY KEY,
host nane VARCHAR(255) NOT NULL,
mapFi | e MEDI UMTEXT NOT NULL

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.2 HOW TO: QUICK INSTALLATION 5

in which you should replace <gumsserver.site.gov> with the machine on which you will run the GUMS
server component, and choose a <password>.

You should also add your certificate in the admin group:

I NSERT | NTO User SET user DN="/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=CGabri el e Carcassi",
user G- oup="adm ns";

Preparing java

GUMS is written in java, and requites java to be installed to run. Be sure it is installed in your $PATH.
Try running:

[root @umns root]# java -version

java version "1.4.2_04"

Java(TM 2 Runtinme Environnment, Standard Edition (build 1.4.2_04-b05)
Java Hot Spot (TM) Cient VM (build 1.4.2_04-b05, m xed node)

If you do not have java installed, go to http://java.sun.com and follow the instructions to get the latest
version. Then add java to $PATH.

Preparing the certificate directory

GUMS will need the GRID certificate for the host and the certificate directories in place.

TODO: Explain how to setup this using VDT.

Preparing Tomcat + EGEE security

The GUMS service will require a web server container, configured to use SSL with Globus proxy
certificates. You will also need Xerces 2.5.0 in the common/endorsed directory. If you do not know what
that means, just grab the already packaged Tomcat from the download page and install it.

* Grab the tarball from the download section [root@gums root|# mkdir /opt/gums-service
[root@gums root]# cd /opt/gums-setvice [root@gums gums-service]# wget
http://grid.racf.bnl.gov/GUMS/dist/tomcat5.0.28EGEESec.tat.gz .

* Untar it [root@gums gums-service|# tar -xzvf tomcat5.0.28 EGEESec.tar.gz

* Review the configuration of the server [root@gums gums-service]# vi conf/server.xml

NOTE: if you need to change the configuration for the service certificate, or the port on which the
service runs, you can edit the fSTOMCAT_HOME/conf/server.xml tomcat configuration file. Find
the section:

<Connector port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://java.sun.com

1.2 HOW TO: QUICK INSTALLATION 6

—n

enableLookups="false" disableUploadTimeout
scheme="https" secure="true"

true" acceptCount="100" debug="0"
sSLImplementation="org.glite.security.trustmanager.tomcat. TMSSLImplementation"
ssICAFiles="/etc/grid-security/ certificates /*.0" ctlFiles="/etc/grid-security/ certificates/*.t0"
sslCertFile="/etc/grid-security /hostcert.pem" sslKey="/etc/grid-security /hostkey.pem"
log4jConfFile="/opt/gums-setvice/conf/log4j-trustmanager.properties” clientAuth="true"
ssIProtocol="TLS" />

If you installed in a different directory than /opt/gums-service, change the location of log4jConfFile
(TODO can this be made relative to tomcat.base?). To change the location of the service certificate
or the CAs, simply change the ssIXxx and ctlFiles properties. To change the port, change the port

property.
Start the server [root@gums gums-service]# bin/catalina.sh start

Connect to the server through a web browser with a Grid certificate installed, to check that is indeed
running.

Install the service

The service itself is a standard java web application. Grab the latest gums-service-0.7.1dev-latest.war file
from the dist directory , and unpack it in your $TOMCAT_HOME /webapps/gums directory. Tomcat
will auto-mount.

L]

Grab the latest build and install [root@gums root]# cd /opt/gums-setvice/ [root@gums
gums-service]# wget http://grid.racf.bnl.gov/GUMS/dist/gums-service-0.7.1dev-latest.war .
[root@gums gums-service]# mkdir webapps/gums [root@gums gums-service]# cd webapps/gums
[toot@gums gums]|# jar -xf ../../gums-service-0.7dev-build<latest>.watr

Check the configuration file for the database information: [root@gums gums|# vi
WEB-INF/classes/gums.config You will see something like: <persistenceFactory name="mysql'
className="gov.bnl.gums.MySQLPersistenceFactory' jdbcDriver="com.mysql.jdbc.Driver'
jdbcUtl="jdbec:mysql:/ /*your_server*/GUMS_0_7' user="gums' password="password*'
autoReconnect="true' /> You will need to set the server and password. If you need to pass extra
parameters to the MySQL database driver, you can simply add them as attributes. For example,
autoReconnect is a property for the driver to retry the connection if it dropped.

Restart the tomcat server: [root@servicesO1 gums]# ../../bin/catalina.sh stop Using
CATALINA_BASE: /opt/gums-service Using CATALINA_HOME: /opt/gums-service Using
CATALINA_TMPDIR: /opt/gums-service/temp Using JAVA_HOME: /ust/java/j2sdk
[root@servicesO1 gums]# ../../bin/catalina.sh start Using CATALINA_BASE: /opt/gums-service
Using CATALINA_HOME: /opt/gums-service Using CATALINA_TMPDIR:
/opt/gums-service/temp Using JAVA_HOME: /ust/java/j2sdk

Get a browser in which you have your grid certificate, go to: https://<machine>:<port>/gums : you
should see the GUMS web interface.

Try generating the mapfile for the host "testing.site.com", and it should give you some response.

[Optional] Another thing you can do is activate the e-mail forwarding of the log in case of error. Edit
/opt/gums-service/webapps/gums/WEB-INF/ classes /log4j.properties, and you will se a
commented out section. Fill in the appropriate information, restart the service, and whenever GUMS
will encounter an error, an e-mail will be sent to the address you specified.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/
https://%3Cmachine%3E:%3Cport%3E/gums

1.2 HOW TO: QUICK INSTALLATION 7

* [Optional] GUMS provides a log suitable for cybersecurity in the
/opt/gums-service/logs/gums-site-admin.log. The same log can be configured to use syslogd. Please
refer to the logging documentation for more details.

* [Optional] One of the things GUMS does, is downloading the information from the VO servers
every 12 hours. The clock will start at the first access to GUMS functionalities after each restart (i.e.
first time you actually generate a mapfile or map a user). The time between updates can be set. The
easiest way to do it, is to edit the /opt/gums-service/webapps/gums/WEB-INF/web.xml file.
<env-entry> <env-entry-name>updateGroupsMinutes</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type> <env-entry-value>720</env-entry-value>
</env-entry> Change the entry value to the number of mintues you prefer.

Congratulations: the server is up and running.

Installing the admin client

NOTE: GUMS Admin doesn't need to be installed on the same machine than GUMS. But it needs to be
installed on a machine where grid-proxy-init and your user certificate are available.

Now you will need to install GUMS admin to access the command line tools. Grab the latest
gums-admin-0.7.1dev-latest.noarch.rpm file from the dist directory : it will install by default in
/opt/gums, but the package is relocatable, so you can install it wherever you want.

* Grab the latest build and install [root@gums root]# wget
http://gtid.racf.bnl.gov/GUMS/dist/ gums-admin-0.7.1dev-latest.noarch.tpm . [root@gums root|#
rpm -Uvh gums-admin-0.7dev-build<latest>.noarch.rpm

* Check that GUMS was installed correctly[root@gums root]# cd /opt/gums/bin/ [root@gums bin]|#
./gums usage: gums command [command-options] Commands: generateGrid3UserVoMap -
Generate grid3-user-vo-map.txt for a given host. generateGridMapfile - Generate grid-mapfile for a
given host. manualGroup-add - Includes a DN in a group. manualGroup-remove - Removes a DN
from a group. manualMapping-add - Adds a DN-to-username in a mapping. manualMapping-remove
- Removes a DN from a mapping. mapUser - Local credential used for a particular user.
mapfileCache-refresh - Regerates mapfiles in the cache. updateGroups - Contact VO servers and
retrieve user lists. For help on any command: gums command --help

Now, you need to tell gums-admin where is your GUMS server.

[toot@gums bin]# cat ../etc/gums-admin.properties

gums.location=https:/ /localhost:8443 /gums/services/ GUMSAdmin Replace the localhost with the
full machine name (even if you installed GUMS Admin on the same machine). [root@gums bin|# vi
../ etc/gums-admin.propetties [root@gums bin|# cat ../etc/gums-admin.properties
gums.location=https://gums.mysite.com:8443/gums/services/ GUMSAdmin

You will run gums-admin as a normal user, and not as root. You will need to change permission on
the directory:

[root@gums bin]# chown username:groupname .. -R
Test the service by generating a mapfile at the command line

[root@gums bin]# su - username [username(@gums bin]# grid-proxy-init [username@gums bin]#
./gums generateGridMapfile testing.test.gov

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/

1.2 HOW TO: QUICK INSTALLATION 8

You should get the same response you got from the web server.

Congratulations you installed GUMS Admin. To make it actually useful, now you need to go back on the
server and write an XML policy file. Please refer to the rest of the GUMS documentation.

Install the host client

If you want to be able to generate the maps for a host on that host, you can install GUMS Host. Grab the
latest gums-host-0.7dev-latest.noarch.rpm file from the dist directory : it will install by default in
/opt/gums, but the package is relocatable, so you can install it wherever you want.

* Grab the latest build and install [root@gums root]# wget
http://gtid.racf.bnl.gov/GUMS/dist/gums-host-0.7dev-latest.noarch.tpm . [root@gums root]# tpm
-Uvh gums-host-0.7dev-build<latest>.noarch.rpm

* Check that GUMS was installed correctly[root@gums root]# cd /opt/gums/bin/ [root@gums bin]|#
./gums-host usage: gums-host command [command-options] Commands: generateGrid3UserVoMap
- Generate grid3-user-vo-map.txt for this host. generateGridMapfile - Generate grid-mapfile for this
host. mapUser - Maps a user to the local account using the AuthZ interface used by the gatekeeper
callout. For help on any command: gums-host command --help

* Now, you need to tell gums-host whete is your GUMS setver.[root@gums bin|# cat
../ etc/gums-admin.properties gums.location=https:/ /localhost:8443/gums/services/ GUMSAdmin
gums.authz=https:/ /localhost:8443 / gums/services/ GUMS AuthotizationServicePort Notice there
are two addresses: one is the GUMS setvice and one is the GUMS Authorization setrvice, which is the
one also used by the gatekeeper callout. Replace the localhost with the full machine name
[root@gums bin]# vi ../etc/gums-admin.properties [root@gums bin|# cat
../ etc/gums-admin.properties
gums.location=https://gums.mysite.com:8443/gums/services/ GUMSAdmin
gums.authz=https://gums.mysite.com:8443/gums/services/ GUMSAuthotizationServicePort

* You will run gums-host as root, since it will authenticate with the host certificate. Test the service by
generating a mapfile at the command line[root@gums bin]# ./gums-host generateGridMapfile

The response will vary depending whether you have configured the policy or not.

Congratulations you installed GUMS host.

Problems?

If you have any problem, feel free to contact GUMS developers.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/dist/

1.3 INSTALLATION GUIDE 9

Installation guide

GUMS installation and walkthrough

This article describes all the components of GUMS and all the installation details: it is not meant as a quick installation
guide. Please, refer to the quick installation guide if you prefer to get up and running and need the
command line. This guide assumes you are familiar with SQL, a bit of Java, Tomcat, ..., and that you are not
interested in the exact command lines to write. 1t's meant for giving all the pieces of the puzzle so that an admin is
comfortable with what GUMS does, and bas an idea where to put his hands in case of problems.

The pieces
Before beginning, we describe what components are there in GUMS.

* The service: the main component is a web application that consists of a Web Setvice interface (WS)
and a Web Uuser Interface (WebUI). The same web application contains web pages for the admin to
use through a browser, and a Web Service door that allows command line tools and other services to
use GUMS functionalities. The Web Service part is a SOAP service built on Apache Axis. The web
application is secured through SSL, that is also both WS and WebUI have the same transport level
security. If GUMS is installed on a server without SSL, though part of the WebUI will be available, it
won't proceed with any operations. The authorization is internal to GUMS: in the configuration you
define a group of admins, who have full access; Services will have only read access to their mappings
(i.e. map user or generate maps).

The service was developed and tested on a Tomcat 5.0.28 + EGEE security installation, though it
should work on any J2EE compliant web servers with SSL.

* The persistence layer: GUMS will need a place to store some temporary data, for example it caches
the information it reads from the VO server, and some critical data, such as manual mappings the
admin might want to define. At this time, the whole persistence layer is based on a MySQL server,
though we plan to allow any RDBMS (the persistence layer needs some refining before it can be used
24/7, as part of that refining we will be able to use almost any JDBC compliant database). The idea,
though, is that a site might want to integrate this part within their infrastructure. For example, at BNL
we want to store all the critical data on our LDAP servers, which already contain most of the user
accounts information. To integrate one needs only to implement a couple of classes and change the
configuration file, all of which can be done at runtime. The suggestion is to evaluate GUMS on a
MySQL back-end, and then, if desired, plan the integration.

* The admin tools: this is a set of command line tools to administer GUMS. They connect to the WS to
perform the different tasks. All operation will be carried with the admin credentials, who will use the
GRID proxy beforehand. All this activity will be logged on the server. Being the admin tools are a
client to GUMS, they can be installed on the same host where GUMS is running or on a different
host.

* The host tools: this is a set of command line tools to be installed on a generic host to retrieve the
maps (i.e. grid-mapfile et al) , or to test the connectivity for the callout. All operation must be carried

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 INSTALLATION GUIDE 10

with the host/service credentials, that is the certificate and private key. The host will be allowed only
to retrieve information about its mappings. The CN of the host certificate and the hostname will be
used, and must match to the GUMS setup. That is, for a host gatekeeper.mysite.com, with a
CN=gatekeeper.mysite.com, GUMS will have to have a map for the host with the same name.

GUMS can also run in different modes, described in the GUMS modes of operation section. They are
essentially variations in the user of GUMS. We won't talk extensively about those, as they are getting less
relevant now, as we get closer and closer to GUMS 1.0. We will mention a few things, though, that affect
the setup. It will be indicated by a "Different mode note:" warning.

The installation steps are:

* Preparing the persistance layer backend (i.e. MySQL for the standard installation)
* Installing the service and setting up a policy
* Installing the admin tools

* Installing the host tools on the target gatekeepers

Root vs non-root

GUMS can be installed as both root and non-root. The only issue is the host certificate: GUMS must be
able to access a host/setvice certificate with its private key for authentication. Generally, it is located in
/etc/grid-mapfile/hostcert.pem with root permissions. One could either set those permissions to a
different user, or create another copy for gums. Such as /etc/grid-security/gumscert.pem.

Firewall and security considerations

GUMS doesn't require any pott to be installed outside the firewall. The only requirement is to have an
inbound TCP port opened on the GUMS server (default 8443), and an outbound port from all
gatekeeper to that GUMS port.

All GUMS requests are over SSL. Grid certificates are used for authentication and authorization.

All access to GUMS is logged. Logs can be configured to use syslogd, which can be used to forward the
logs to the cybersecurity department of the site.

Prepare the database

The first to do is to prepare the database. There is currently no script to do it: it's something we plan on
doing.

You will need a mysql server, with version 4.0.18 or greater installed. You can either install one from
scratch (follow the instruction on mysql's site) ot you can use an installation you have ready.

Log in as root and run the following script:

CREATE DATABASE GUVS _0_7;
GRANT ALL

ON GUMS_0_7.*
TO gunms@ <gumnsserver. site.gov>'" | DENTI FI ED BY ' <password>';

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 INSTALLATION GUIDE 11

USE GUMB_0_7;

CREATE TABLE User (
user | D | NTEGER AUTO_| NCREMENT PRI MARY KEY,
user DN VARCHAR(255) NOT NULL,
user FQAN VARCHAR(255) DEFAULT NULL,
regi strationDate DATETI ME NOT NULL,
renoval Dat e DATETI ME DEFAULT NULL,
user G oup VARCHAR(255) NOT NULL

)

CREATE TABLE User Account Mappi ng (
mappi ngl D | NTEGER NOT NULL,
user DN VARCHAR(255) DEFAULT NULL,
account VARCHAR(31) NOT NULL,
start Dat e DATETI ME DEFAULT NULL,
endDat e DATETI ME DEFAULT NULL,
user Group VARCHAR(255) NOT NULL

in which you should replace <gumsserver.site.gov> with the machine on which you will run the GUMS
server component. As you see the database is very simple: it's just a place to store lists of users (in the
User table) and a list of mappings (UserAccountMapping). It's meant to be simple: it's direct consequence
of the requirement that GUMS should be easily ported to other persistence mechanisms (i.e. LDAP,
other site internal DB, ...). The first table will be mainly used to cache the values from the VO servers.
For example, in the policy you will specify you want to map all the users from the ATLAS VO to the
'usatlas1’ account: from time to time GUMS will query the VO server and store the list of users in the
User table. For each mapping request, GUMS will look at its local copy instead of the remote VO server.

The User and UserAccountMapping tables are also critical for manual user groups and manual mappings.
This means an admin is free to create a group of certificates, or a certificate to user mapping, to handle
special cases. GUMS will have commands to add entries to these mapping, so you do not need to use the
DB directly. You can if you want, though, for integration purposes. In any case, the use of these manual
groups and mappings has a big effect: this is critical information that cannot be lost. Which means you
will need to backup the server. This is a good candidate for integration: you might want to keep this
information in the same information system you use for user account, as the information is connected.

To sum up: if you do not use manual groups and mappings, the information in the database can be
regenerated at any time. If you do, GUMS has critical information, and you might want to make it safer
through some kind of backup.

Different modes note: if you need to use mode 3 or 2 1/2 you will need to 2 extra table to store the maps.
You should run:

CREATE TABLE Host Gri dMapfile (

mepfil el D | NTEGER AUTO_| NCREMENT PRI MARY KEY,
host nane VARCHAR(255) NOT NULL,

mapFi | e MEDI UMTEXT NOT NULL

)
CREATE TABLE Host Gri d3User VoMap (

mapfil el D | NTEGER AUTO | NCREMENT PRI MARY KEY,
host nane VARCHAR(255) NOT NULL,

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 INSTALLATION GUIDE 12

mapFi | e MEDI UMIEXT NOT NULL
)

Once you created the database, you probably want to insert your DN in the User table within a group
you will later use in GUMS as the admin group. For example:

I NSERT | NTO User SET user DN="/ DC=or g/ DC=doegr i ds/ OU=Peopl e/ CN=Gabri el e Carcassi",
user G oup="adm ns";

This is essentially in a manual user group named "admins".

The database is prepared: you can now proceed to install the Service

Installing the service

GUMS is written in java, and requires java to be installed to run. It was developed against Sun JDK 1.4.2,
but it should run on any 1.4.x and 1.5.x compliant JVM. If you need to install java, or learn more about it,
refer to the documentation at http://java.sun.com .

The GUMS service is a standard J2EE application, which means it is a file (.war) that can be installed in
any compliant engine. We provide a tarball containing a Tomcat 5.0.28 + EGEE security preconfigured,
which is the configuration GUMS was developed against. The EGEE provides an SSL Socket Factory
that Tomcat uses to create the SSL connections. The EGEE SSL is essentially standard SSL with the
addition of Grid proxies. You can find more information about it if you look for "glite trustmanager".
The bundled tomcat is modified in the following way:

* 4 more jars where put in the §CATALINA_HOME/server/lib ditectory:
beprov-jdk14-125 jar
glite-security-trustmanager.jar
glite-security-util-java.jar
log4j-1.2.8.jar
These contain the EGEE SSL socket factory and dependency

* In $CATALINA_HOME/conf the following file is added:
log4j-trustmanager.properties
Which is the logging configuration for the EGEE security

* The $CATALINA_HOME/conf/server.xml was modified. The following section is added:
<Connector port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true" acceptCount="100" debug="0"

scheme="https" secure="true"

sSLImplementation="org.glite.secutity.trustmanager.tomcat. TMSSLImplementation"
ssICAFiles="/etc/grid-security/ certificates /*.0" ctlFiles="/etc/gtid-security/ certificates/*.t0"
sslCertFile="/etc/grid-security/hostcert.pem" ssliKey="/etc/gtid-security/hostkey.pem"
log4jConfFile="/opt/gums-setvice/conf/log4j-trustmanager.propetties" clientAuth="true"

sslProtocol="TLS" />

This makes Tomcat listen on port 8443 for https, using the EGEE security. You will notice all the
parameters for a Grid connection, and the configuration file that was added for EGEE security

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://java.sun.com

1.3 INSTALLATION GUIDE 13

logging. The part declaring the port 8080 on http was closed.

Essentially, this is what is needed to setup EGEE security.

The web application is available on the web site as a war, though you should use it unpacked: the
configuration files are for now kept in the /WEB-INF/classes directory, and loaded through
classloading; using the war means you would need to modify the files within the war archive, which is not
practical.

The configuration files are 2:

* log4j.properties. This is a standard log4j configuration, which will determine how the logging is
implemented. This is loaded once when the server is started. To change it, the service will need to be
restarted.

* gums.config. This is the policy file for GUMS, which determines how all users will be mapped to
their local account. Also the access to the database is defined here. This can be changed at any point,
and the service will pick it up. At any operation that needs the configuration, a check is performed to
see if the file has been changed. If it is, this will trigger a configuration reload.

Different modes note: hosts.conf: this is used in modes 2 1/2 and 3 to determine which maps should be
created and stored in the mapfile cache

You can refer to the full documentation of the configuration files for the details.

Once you have setup the server and the web application, you can use your browser with your grid
credential to connect to the WebUI and run a couple of commands.

Installing the admin tools

The admin tools come packaged in an rpm. The default location is /opt/gums, but the destination can be
changed. Once you install it, you will see 4 directories:

* Dbin: contains the gums executable. It's a shell script that prepares the java environment for GUMS.
One critical part is the creation of the variable to handle the grid security. It is a single executable that
accept different commands, like cvs does (i.e. "./gums mapUser ...", "./gums generateGridMapfile
..."". The script has --help options that explains what are the current features.

* ctc: contains the configuration file for admin, which is one. The only thing it contains the URL to the
servlet that runs the web service. You have to point to your server before being able to run any
commands

* lib: contains all the java libraries needed by GUMS

e var/ log: contains the log files for the admin. There won't be much there, as all the functionalities are
implemented on the service.

You can use the admin to:
* View the generations of the map

* Change the manual group and mapping

* Trigger a refresh of the groups (i.e. make GUMS contact the VO servers to refresh the local member
lists)

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.3 INSTALLATION GUIDE 14

Installing the host tools

The host tools also come package in an rpm. The default location is also /opt/gums, and the destination
can be changed. The directory structure is the same than the admin tools. The differences are:

* The command is gums-host
* The script will set the credentials as the one for the host (i.e. /etc/grid-secutity/hostcert.pem, ...)
* The set of commands are limited
You can use the host tools to:
* Generate maps for the host: these will be based on the hostname
* Test the connectivity of the callout door. TODO This still needs to be implemented.

If you cannot use the callout on a gatekeeper, you will be able to use the host tools within a cron job to
update the maps at regular interval.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4 CONFIGURATION 15

14 Configuration

Configuring GUMS

There are three files used by GUMS for the configuration.

* gums.config - holds the policy used by GUMS to create the mapping. It defines where to get the VO
members, how should they be mapped, and which groups can access which gatekeepers

* hosts.conf - contains a list of hosts for which to generate the mapfile for the cache (not used if using
GUMS setrvice)

* db.properties - contains the db information for gums host direct access (not used if using GUMS
service)

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG 16

141 gums.config

gums.config

This file contains the policy in an XML format. The syntax is meant to allow anybody to create his/her
own components and integrate them just by dropping a jar in the lib directory. Therefore many
components are defined by class names and bean properties. (If you are not a java programmer, a bean
property is a getXxx/setXxx pattern, where xxx is the name of the property).

The XML file has this structure:

<gumns>
<per si st enceFactori es>
<per si st enceFactory/ >
</ per si st enceFactori es>
<adm nUser G oup/ >
<gr oupMappi ngs>
<gr oupMappi ng>
<user Group/ >
<account Mappi ng/ >
</ gr oupMappi ng>
<gr oupMappi ng>
<user G oup/ >
<conposi t eAccount Mappi ng>
<account Mappi ng/ >
<account Mappi ng/ >
<account Mappi ng/ >
</ conposi t eAccount Mappi ng>
</ gr oupMappi ng>

</ gr oupMappi ngs>

<host Gr oups>
<host Group/ >
</ host Gr oups>
</ guns>

There are 3 sections:

* persistenceFactories - defines where the local data can be stored. For example, GUMS will keep a
local copy of the VO listings: you can decide where to keep them. Each component that will need
persistence will retrieve it through the factory. This allows to create a custom persistence layer for the
facility.

* groupMappings - defines group of user and how they are mapped. A groupMapping is defined by two
thins: a set of users (userGroup) and a policy for account mapping (accountMapping). Optionally, the
policy can be composed by different policies (compositeAccountMapping)

* hostGroups - defines which groupMappings are used for the different hosts

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG 17

persistenceFactories
This section just contains a list of persistencelFactory elements.
<persi st enceFactori es>
<persi st enceFactory name=' nysql'

cl assNanme=' gov. bnl . guns. MySQLPer si st enceFactory' />
</ per si st enceFactori es>

persistenceFactory

The type of persitenceFactory is determined by the class which has to implement the PersistenceFactory
interface. The basic attributes are:

Attribute Description Examples

name The name that will be used by the other mysq|
components to refer to this files
persistenceFactory. Idap

className The class that is going to provide the gov.bnl.gums.MySQLPersistence
implementation for the persistence layer. It Factory
must implement gov.bnl.gums.Persistence org.mysite.HRDatabaseFactory
Factory.

Other attributes are implementation specific.

All the elements that will be using the database, will need to set the 'persistence

Factory' attribute to the name, and then provide a 'name' attribute that will identify which information to
use. What that name means is implementation specific. For a database layer, for example, it could mean a
table or a column value within a well known table; for a file layer it could mean the name of the file.

gov.bnl.gums.MySQLPersistence Factory

Currently, the only implementation provided is the MySQLPersistenceFactory. All the attributes are
passed as properties to the database driver. For example:

<persi stenceFactory nane='nysql' cl assNanme='gov. bnl . guns. MySQLPer si st enceFactory'
jdbcDriver="com nysql.jdbc. Driver'
jdbcUrl =" jdbc: nmysql :// nydb. nysite. coml GUMS_0_7' user='guns'
passwor d=' nypass' autoReconnect='true' />

adminUserGroup

This defines the set of users that have admin privileges on GUMS. This entry has the same options as a
userGroup entry. Refer to that part of the documentation.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG 18

groupMappings

This section will contain a list of groupMappings elements.

groupMapping

A group mapping is composed by two elements: a userGroup and a mapping, which can either be a
compositeAccountMapping or an accountMapping.

Attribute Description Examples
name The name that will be used by the other atlas
components to refer to this star
persistenceFactory. phenix
userGroup

This element defines the list of people that will be part of this groupMapping. A userGroup is typically
defined by a group on a VO server or on a database. This element corresponds to the UserGroup
interface in the code, meaning you can provide your own logic. The basic attributes are:

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.LDAPGroup
implementation for the user group. It must gov.bnl.gums.VOMSGroup
implement gov.bnl.gums.UserGroup. gov.bnl.gums.ManualGroup

gov.bnl.gums.LDAPGroup

This class retrieves the list of members from an LDAP VO, as it is defined within LCG. The attributes
available are:

Attribute Description Examples
server The LDAP server from which to retrieve the grid-vo.nikhef.nl
information
query The query to be used on the server. ou=usatlas,o=atlas,dc=eu-datagrid,dc=org

ou=People,o=atlas,dc=eu-datagrid,dc=org

persistence The persistence layer to be used to store mysq|
Factory locally the list of users. The string must be
one of the names defined within the
persistenceFactories section.

GUMS doesn't contact the server
at every request, but it keeps a
local cache, which is refreshed
from time to time

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG

19

Attribute Description Examples
name The name of the cache within the persistence atlas
factory. Refer to the specifics of the usatlas

persistence factory itself.

For example:

<user Group cl assNane=' gov. bnl . guns. LDAPG oup'

server='grid-vo. ni khef.nl"

guer y=' ou=Peopl e, o=at | as, dc=eu-dat agri d, dc=org' persistanceFactory="'nysql"'

nane='atl as' />

Retrieves all the user in the ATLAS VO LDAP server.

gov.bnl.gums.VOMSGroup

'This class retrieves the list of members from an VOMS Server. The attributes available are:

Attribute Description Examples
url The url of the web services for VOMS. Notice https://vo.racf.bnl.gov:8443/edg-voms-admin/atlas/services/VOMSAdm
that it needs the full url of the service: it won't
be constructed from the server name or vo.
voGroup The group defined within the VO. /atlas/test
latlas/group/subgroup
persistence The persistence layer to be used to store mysq|
Factory locally the list of users. The string must be
one of the names defined within the
persistenceFactories section.
GUMS doesn't contact the server
at every request, but it keeps a
local cache, which is refreshed
from time to time
name The name of the cache within the persistence atlasTest
factory. Refer to the specifics of the atlasGroupSubgroup

persistence factory itself.

For example:

<user Group cl assNane=' gov. bnl . guns. VOVSG oup'
url ="https://vo.racf.bnl.gov: 8443/ edg- vons- adm n/ at | as/ servi ces/ VOVBAdm n'

persi st anceFact ory='nmysql"'
nanme='at | as'

voG oup="/atl as/test"

sslCertfile="/etc/grid-security/hostcert.pemn
ssl Key='/etc/grid-security/hostkey. pem />

Retrieves all the user in the VOMS server at the specified utl from the /atlas/test group. It also specifies
which credentials should be used to contact the server.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG 20

gov.bnl.gums.ManualGroup

This class manages a group of identities stored in the persistence. Useful to handle special cases, for
development testbed or for the list of admins. GUMS The attributes available are:

Attribute Description Examples
persistence The persistence layer to be used to store the mysq|l
Factory list of users. The string must be one of the

names defined within the
persistenceFactories section.

name The name of the group within the persistence test
factory. Refer to the specifics of the testbedA
persistence factory itself. admins

For example:

<user Group cl assNanme=' gov. bnl . guns. Manual User Gr oup' persi stanceFactory='nysql"'
nanme='test Goup' />

Selects the users stored manually in the testGroup group.

compositeAccountMapping

A compositeAccountMapping is a mapping policy made up by a list of policies. When a request to map a
user comes, the composite mapper will forward the request to the first mapper in the list. If this fails, the
request is forwarded to the second, and so on. This allows you to create a policy that has a default (the
last element on the list) but allows special cases (the top element in the list).

This element simply contains a list of accountMapping elements.

accountMapping

An account mapping defines the logic with which the user credentials are mapped to the local account.
The logic will be provided by a class implementing the goc.bnl.gums.AccountMapping interface.

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.ManualAccountMapper
implementation for the mapping. It must gov.bnl.gums.NISAccountMapper
implement gov.bnl.gums.AccountMapping. gov.bnl.gums.AccountPoolMapper

gov.bnl.gums.GroupAccountMapper

gov.bnl.gums.NISAccountMapper

This class retrieves the NIS maps and tries to match the name from a certificate. Please, read the full
documentation on the javadoc about this class before using it. The attributes available are:

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.1 GUMS.CONFIG

Attribute Description Examples

21

jndiNisUrl The url as defined in the Java JNDI driver, nis://nis.bnl.gov/atlas

that allows to specify the NIS server and the
domain.

For example:

<account Mappi ng cl assNane=' gov. bnl . guns. Nl SAccount Mapper 2'
jndiNisUl="nis://nis.nysite.org/domain' />

Uses the NIS map taken from the nis.mysite.org server for domain.

gov.bnl.gums.AccountPoolMapper

This class implements account pooling. Please refer to the account pool documentation for the full

detailed description. The attributes available are:

Attribute Description Examples

TODO

For example:

TODO
todo

gov.bnl.gums.GroupAccountMapper

This class maps all users to the same account. The attributes available are:

Attribute Description Examples
groupName The name of the account atlas
testAccount

For example:

<account Mappi ng cl assNane=' gov. bnl . guns. G oupAccount Mapper"'

Maps everyone to the atlas account.

hostGroups

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

gr oupName="at | as'

/>

1.4.1 GUMS.CONFIG

22

This section contains a list of host groups. To determine to which group a particular host is part, GUMS
start from the first one in the list and stops at the first match.

hostGroup

A hostGroup defines a group of hosts and which groupMappings will be used. This element corresponds
to the HostGroup interface. This allows to retrieve hosts lists from other components of the facility, for
example an information service.

Attribute Description Examples

className The class that is going to provide the gov.bnl.gums.WildcardHostGroup
implementation for the hostGroup. It must
implement gov.bnl.gums.HostGroup.

groups A list of groupMappings, in the order of groupl,group2
preference. To determine which group should
be used for a particular user, GUMS will start
from the beginning of the list until it finds a
match. Therefore, if there would be more than
one match (i.e. a user is part of more groups)
the first one in the list is used.

gov.bnl.gums.WildcardHostGroup

This class represent a set of hosts defined by a hostname wildcard. For example, *.mysite.org would
include all the hosts which end in mysite.org. The attributes that can be set for this class are:

Attribute Description Examples

wildcard The wildcard for the set of hosts to be myhost.mysite.org
included. The wildcard is a string where * can atlas*.mysite.org
be substituted with any character, except ".". * atlas.mysite.org

That is, *.bnl.gov wouldn't match
myhost.usatlas.bnl.gov.

For example:

<host Group cl assNanme="gov. bnl . guns. W1 dcar dHost Gr oup"

wi | dcard="*.usatl as. bnl . gov' groups='gridex, sdss, uscns, usatl asG oup, btev, i go,ivdgl'
/>

Maps the hosts in the usatlas subdomain at BNL to the list of groups, which will have been defined in the
groupMappings section.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.4.2

1.4.2 DB.PROPERTIES 23

db.properties

db.properties

This file contains the configuration for the connection to the database. It is the same syntax for both the
server and the client. It is basically the property file that will be sent to the JDBC driver plus two other
properties that allow to select the driver. The database syntax was only tested on MySQL, and this is the
only database supported out of the box.

This is scheme temporary: once we make a transition to a grid service, there will be no need for the client
to use the database. Also, we plan to reimplement the persistence layer using EJB to allow clustering. In
that case the datasource will be configured through JNDI as any other J2EE application, and the database
supported will be all the ones supported by the application server used.

jdbc.driver = comnysql.jdbc. Driver
jdbc.url = jdbc\:nysqgl\://host name/ GUVS
user = guns

password = nypass

Those accustomed to JDBC will recognize the standard jdbc syntax for the driver and url. More
information about the mysql driver connection parameters should be found at
http://dev.mysql.com/doc/connector/j/en/index.html

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://dev.mysql.com/doc/connector/j/en/index.html

1.4.3 HOSTS.CONF 24

143 hosts.conf

Using hosts.conf

The hosts.conf files is used only in mode N 3 and N 2 1/2. Most people can completely disregard thisfile. e

are just being complete in the documentation.

This file contains the list of hosts for which gums is going to create the mapfiles in the cache. As of now,
the server components stores the maps in the database when the gums-mapfilecache-refresh is executed.
This command relies on hosts.conf to know for which hosts to create the maps. The client will use the
host of the machine on which is installed when running gums-mapfilecache-retrieve. If the client has
multiple names due to multiple interfaces, you should use the name you see once logged in the hosts (..
run 'hostname').

The configuration file is simply a text file with the full name of each host on each line. For example:

gridol. nysite.org
grido2. nmysite.org
testgrid.nysite.org

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

15

1.5 COMMANDS: GUMS ADMIN

Commands: GUMS Admin

GUMS Admin commands

GUMS admin consists of a set of command line tools which will be run under the user GRID
credentials. The user must be part of the GUMS admins.

gums

The command is gums with its many options. To see all the options available:

[root @uns bin]$./guns

usage: guns command [conmand- opti ons]

Commands:

generat eGi d3User VoMap - Generate grid3-user-vo-nmap.txt for a given host.
generateGidMapfile - Generate grid-mapfile for a given host.
manual Group-add - Includes a DN in a group.

manual G- oup-renove - Renoves a DN from a group.

manual Mappi ng-add - Adds a DN-to-usernane in a napping.
manual Mappi ng-renove - Renpves a DN from a nmappi ng.

mapUser - Local credential used for a particul ar user.

mapfil eCache-refresh - Regerates mapfiles in the cache.

pool -addRange - Adds accounts to an account pool.

updat eGroups - Contact VO servers and retrieve user |ists.
For hel p on any command:

gunms conmmand - - hel p

Service mapping generation commands

This set of commands can be used by the admin to check how the mapping across the services is
maintained. One can look how the maps generated by GUMS look like, and check to which local user
any Grid identity is mapped.

gums mapUser

With this command an admin can check the mapping of a specific identity, including the VOMS
extended proxy FQAN. This allows to check the user is mapped to the correct account when using
different VO roles.

[maven@uns bin]$./guns mapUser --help
usage: guns mapUser [-h HOSTNAME] [-f FQAN] USERDNL [USERDNZ2]
Maps the grid identity to the |ocal user.
Opti ons:
-f,--fgan <arg> Fully Qualified Attribute Nane, as it would be
sel ected using vons-proxy-init; no extended information by

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.5 COMMANDS: GUMS ADMIN

def aul t
-h, --host nane <arg> host nane; | ocal host by default
--help print this nessage

gums generateGridMapfile
This shows the grid-mapfile GUMS generate for a given host.
[root @uns bin]$./guns generateGidMapfile --help

usage: guns generateGidMapfile [-f FILENAMVE] [HOSTNAME]
Generates the grid-mapfile for a host. HOSTNAME is the nanme of |ocal host

by defaul t.
Opti ons:
-f,--file <arg> saves in the specified file; prints to the console by
def aul t
--help print this nessage

gums generateGrid3UserVoMap

26

This shows the generated inverse vo map used by grid3 for accounting. One can check host per host the

product of the generation.

[root @uns bin]$./guns generateGid3UserVoMap --hel p

usage: guns generateGid3UserVoMap [-f FILENAVE] [HOSTNAME]

Generates the grid3-user-vo-map.txt for a host. HOSTNAME is the nane of
| ocal host by default.

Opt i ons:
-f,--file <arg> saves in the specified file; prints to the console by
def aul t
--help print this nessage

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6 LOGGING 27

Logging

Log

GUMS is designed with 3 logs in mind: developet's log, administrator's log, site secutity log. This means
that you won't find the same things in all of them, and you shouldn't. For example, say that GUMS
connects to a VO server to retrieve a list of users, and the VO server replies with an empty list. From the
developet's perspective the code has wotked fine; but from an administrator's perspective it's probably
the sign that something not going well.

The logs come with a predefined configuration, which is what we describe here. To know more of the
details, especially how to change the configuration, refer to the logging implementation.

Administrator's log

This log is meant for the maintainer of GUMS at a particular site. He is responsible of installing and
configuring GUMS. To manage the mapping by keeping all the information up-to-date.

The log is placed under the service directory (/opt/gums-service/logs/gums-resource-admin.log). The
log can also be configured to be forwarded by mail in case of error. This is particularly useful as the
admins can be informed right away of any problem. Look at the log4j.properties configuration file.

The log includes every command that is being executed by any admins. This allow the administrator to
keep full control of what is happening, together with a history of what has happened to be able to
troubleshoot automatic procedures. The main features are:

* All successful commands are logged as INFO with both input and output parameters

* All unsuccessful commands (including failure do to authorization) are logged as ERROR

Developer's log
The developer log is meant for someone developing the code or fixing bugs.

The log is located under the service directory (/opt/gums-service/logs/gums-developer.log).

Site security log

The site security log is meant for the cybersecurity department of a lab. It includes [TODO check
requirement and implement] all the information for auditing the GUMS service. This information will be
limited to accesses to the service that are going to modify the state of the service. All the access to the
information will be typically already be logged at the gatekeeper.

The log can be configured to be forwarded to the AUTHPRIV facility of syslogd. To enable logging to
the syslogd deamon, you have to modify the log4j.properties and make sure it allows logging from the

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6 LOGGING 28

network. To enable logging from the network, you need to start syslogd with -r option.[root@atlasgrid13
log|# cat /etc/sysconfig/syslog # Options to syslogd # -m 0 disables 'MARK' messages. # -r enables
logging from remote machines # -x disables DNS lookups on messages recieved with -r # See syslogd(8)
for more details SYSLOGD_OPTIONS="-r -m 0" # Options to klogd # -2 prints all kernel oops
messages twice; once for klogd to decode, and # once for processing with 'ksymoops' # -x disables all
klogd processing of oops messages entirely # See klogd(8) for more details KLOGD_OPTIONS="-x"

The reason is that Apache log4j SyslogAdapter can only log through the network (to allow portability),
even if you are logging to the localhost.

Another possibility is to log directly to a remote server: you can do that by modifying the log4j.properties
configuration file in the service.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

16.1

1.6.1 LOGGING IMPLEMENTATION 29

Logging implementation

Log implementation

All information in GUMS is logged through the apache commons logging package. The implementation
used in GUMS is apache log4j. To change the logging implementation you have to refer to the
commons.logging implementation. Be aware that some library that GUMS uses may not be as well
behaved in regard to logging.

The configuration is controlled by the log4j.properties file. This is a normal log4j configuration file: refer
to the log4j manual for more information.

GUMS using the follow conventions for log names:

* The developet's log uses one log for each different class, with the name being the class name. Given
GUMS package structure, "gov.bnl.gums" contains the whole development log for GUMS. This
allows the develop to filter the log of the code he is working on.

* The admin log uses the log named "gums.resourceAdmin"

* The site secutity log is at "gums.siteAdmin"

Administrator's log

This log is meant for whoever is maintaining GUMS installation at a particular site. The log is designed to
be used in different ways: on standard error, in a log file and in e-mails. E-mails will get from WARN up,
the standard error will receive from INFO up and the log can go down to TRACE. The breakdown on
the logging level is:

TODO: The admin log still needs a little thinking

* FATAL - GUMS is unable to operate: no functionalities are available. For example, a configuration
file was not written correctly.

* ERROR - A particular operation failed or was incomplete. For example, the CMS VOMS server
couldn't be contacted, so it's members weren't refreshed (even though the ATLAS group was); the
NIS setver didn't respond, so it is impossible to generate the gtid-mapfile for atlasgtid25, though the
grid-mapfile for atlasgrid26 could be generated since it doesn't require the NIS information.

* WARN - A condition that hints to a misconfiguration or incorrect usage. For example, a VO server
returned no users.

* INFO - A condition that might hint to a problem, but is not critical per se. For example, the NIS
mapper couldn't find a match. A big difference is that INFO doesn't trigger a mail, while WARN
does. It is preferable to log many similar problems as info and then send a WARN to actually send
the mail.

¢ DEBUG - Not used

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.6.1 LOGGING IMPLEMENTATION 30

TRACE - Not used

Developer's log

The developer log is meant for someone developing the code or fixing bugs. Each class will use the log

named as their full class name. The breakdown on the logging level is:

FATAL - An exception or an inconsistency that forces GUMS to terminate or not function at all. For
example, a configuration file was not written correctly or couldn't be found.

ERROR - An exception or an inconsistency that doesn't allow GUMS to complete a particular
operation ot part of it. For example, the CMS VOMS setver couldn't be contacted, so it's members
weren't refreshed (even though the ATLAS group was); the NIS server didn't respond, so it is
impossible to generate the grid-mapfile for atlasgrid25, though the grid-mapfile for atlasgrid26 could
be generated since it doesn't require the NIS information.

WARN - An exception or an inconsistency that is not necessarily going to affect functionalities, or an
error condition that was recovered. For example, a particular cache was found to be out of synch and
was rebuilt.

INFO - The successful completion of a macro-event (i.e. something that happens only once in a
while). For example, the configuration file was read, the server was started. Typically used to debug
configuration problems.

DEBUG - The attempt or successful completion of a smaller event. For example, a query was
executed, a user was mapped. Typically one shouldn't have more than one DEBUG statement in a
method.

TRACE - Shows the internal execution of the code. As a contrast, building a query would be at this
level. Inside method logging should be done at this level

Site security log

The site security log will log all accesses.

INFO - Will log all the "write" accesses
DEBUG - Will log all the "read" accesses

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.7

1.7 INTEGRATION 31

Integration

GUMS extension and site integration

Al the main components of GUMS are developed against interfaces with minimal coupling to GUMS itself, allowing a site
to rewrite those components to interface their systems. In this article we will describe those interfaces and provide examples on
how this integration can be done. We refer to the online GUMS code for examples: if you want to read this on
printed paper, you might also want to print the code linked from the online version of thisarticle.

The policy file, as you might know by know, allows to select at runtime the different pieces of code that
performs crucial functionality during the mapping. This allow a site admin to extend GUMS to talk to its
site information systems. For example, at a particular site an admin might require to:

* Store all the information GUMS uses for the mapping in the same system used by the rest of site
account (l.e. LDAP, databases like Oracle or MySQL, ...)

* Use an already existing software, developed within the site, to perform the mapping (i.e. as part of the
user information database, a user was already able to select the grid certificate at the site)

* Use a different database for group information (i.e. the site wants to map his admins in a different
way, and wants to take the list of admins directly from its databases)

* Use some other information service to decide which service should use which mapping (i.e. one
wants to set on all production machines a particular mapping, and the list of production machines is
stored within their own information service)

GUMS doesn't require integration: it can work fine by itself. But if a site requites integration, it is easy to
do: it just requires a little knowledge of Java. If your use case is not site specific, we are willing to help
cither in the development or to distribute it as part of GUMS. Go to the GUMS site and use our mailing
lists!

Changing storage for GUMS data

Suppose you have already a user management system that already keeps some grid to username mapping,
or that you want to tightly couple the pool account system that GUMS provide with your site LDAP, or
that you want to give a special mapping to a list of users which can be taken directly from some database:
how would you do it, you might ask.

In GUMS, there is a PersistenceFactory class which is responsible to create all the object that are going to
write to/from a specific information system. For example, GUMS provides a MySQLPersistanceFactory
which is going to implement the logic of how to write/read on the default MySQL implementation. A
site can implement its own PersistenceFactory to rewrite where the data is written and read from.

The PersistenceFactory is just a factory class to create the objects that actually implement the persistence
layer. There are different kind of those objects: UserGroupDB is used by the many groups to cache lists
of users so GUMS doesn't have to contact the VO server every time; ManualAccountMapperDB is used

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/ManualAccountMapperDB.html

1.7 INTEGRATION 32

by the ManualAccountMapper to store a mapping table. The first note is that you do not need to
implement the all the kinds, but only the one or more you need. For those you do not need to
implement, you can use:

throw new j ava. | ang. Unsupport edOper ati onException("...");

This will allow you to trap and recognize mistakes in configuration later. This is also true for any other
method you do not feel to implement (i.e. you might not want GUMS to modify the information in your
site databases)

You can use the MySQLPersistenceFactory as a trace: it creates an inner class for any interface it needs to
implement, and when asked to give a persistence object it just creates an instance of the appropriate inner
class. You can, this way, implement a ManualAccountMapper2DB that is going to read the site user
management system. You can implement an AccountPoolMapperDB that reads the account informations
from the site LDAP. You can implement a ManualUserGroupDB that reads the list of users from your
database.

Creating a mapping

One of the thing a site can do, is to create it's own policy for the mapping. We suggest to look at the code
of the mappings provided by GUMS as examples.

All the mappings implement the AccountMapper interface. The only method one needs to implement is
the mapUser, which given the user credential is going to return the username.

The GroupAccountMapper , for example, will map all the users to the same account. The actual account
will be set through the groupName property (notice the getGroupName and setGroupName) in the
configuration file. For example:

<account Mappi ng cl assNane=' gov. bnl . guns. G- oupAccount Mapper' groupName='test' />

will set the groupName to "test". You can create any property you like: while reading the configuration
GUMS will look at your class for a name match [This is actually provided by the Apache Jakarta
Commons Digester library].

We suggest you develop and test the class by itself, without running it in gums. You can have a main
method, or a set of unit tests, to simulate some requests using the mapUser method, and see that it
behaves correctly. Once you have done that, you can prepare a jar, and put it in the lib directory of the
gums service. You will have to restart the service, as tomcat creates the list of available jars when the
service is started. You can change the policy configuration, instead, at any time.

A mapping is particularly useful for those sites that have already a user management system, which
already contains a username/certificate mapping. Through an extension, GUMS can be made to use that

mapping.

Creating a group

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/components/business/apidocs/gov/bnl/gums/AccountMapper.html
http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/GroupAccountMapper.html

1.7 INTEGRATION 33

Another thing one can do is create their own group. Suppose, for example, that a site wants to use a new
VO server, which is not, at that time, supported by GUMS. Or suppose that the site wants to grant all its
admins a different mapping, and wants to get this list directly from their LDAP system, so that there is
only one place to keep updated. All of these can be supported by creating a group.

Look at the at the UserGroup class: a group is essentially a function that is able to tell: "is this person in
the group?". The isInGroup() function is going to check, by whatever means, if the Grid Identity is
within that group.

There is a getMemberList(). This is actually optional: if you have an EveryoneGroup, for example, you
can't name everyone. In that case, you should use something like:

throw new j ava. | ang. Unsupport edQper ati onExcepti on(" G oup cannot be enunerated.");

The catch is that GUMS won't be able to generate a grid-mapfile for those hosts that make use of this
group. Only the gatekeeper callout can be used.

The updateMembers() function is intended for those group that require access to remote setrvices. For
example, access to a VOMS server cannot be on a per request basis. For similar cases, one should
implement the updateMembers() function to retrieve and store the data on a site local service. If you do
this, you might want to use a UserGroupDB to store the information, so that it integrates with the rest of
petsistence. You can look at the VOMSGroup class for an example.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

http://grid.racf.bnl.gov/GUMS/components/business/apidocs/gov/bnl/gums/UserGroup.html
http://grid.racf.bnl.gov/GUMS/components/business/xref/gov/bnl/gums/VOMSGroup.html

18

1.8 OPERATION MODES 34

Operation modes

GUMS modes of operation

Here we describe the 3 ways GUMS was designed to operate. The second and the third were designed as both a gradual
change and a fall-back solution. Here we provide a full explanation in case that someone is forced (or prefers) to use one of
those modes.

This article doesn't attempt to give a full explanation: we currently do not envision any new user starting
from anything than the first mode. All these configuration have been part of an evolving system, which
might be completely disregarded by the new user. We leave here for full documentation, and for fall-back
solutions in case a site has to maintain a hybrid system. The advantage of being able to switch from one
configuration to the other is that the policy won't change, mainly just software configuration on the
gatekeepers.

1. GUMS Service and GT2.x callout

In this configuration you have a GUMS Service, running all the time, that waits for the gatekeeper to call
it. Using the callout, the gatekeeper will contact the GUMS service at every request to retrieve the local
account. This is the desired mode of operations, as this allows most features, including Role based
authentication. Also, all policies that cannot provide the full enumeration of all authorized users (i.e. all
certificates from the DOEGrids CA, or default allow to a special account) cannot be implemented with
the grid-mapfile.

To setup this mode, one sets up a normal GUMS Service, and configures the callout module provided in
VDT to contact their GUMS Setrvice.

2. GUMS Service and grid-mapfile

In this configuration you have a GUMS Setrvice, running all the time, that waits for a sctipt running on
the gatekeeper to contact it. GUMS Host will run as a cron job on the gatekeeper, and will retrieve a new
version of the grid-mapfile.

To setup this mode, one sets up a normal GUMS Service, and installs GUMS Host on all gatekeepers.
Then one would setup a cron job to run the "gums-host generateGridMapfile" command and redirect it
to the grid-mapfile location.

The only difference in this mode is the client. In fact, one could have the same GUMS Service serving
two clients with different modes. It can be used to make a more gradual transition.

3. GUMS Admin and grid-mapfile cache

In this configuration there is no GUMS Service. The server part is done by a database server. GUMS

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.8 OPERATION MODES 35

Admin is run directly, and pre-generates the maps for all hosts and stores them in the database. GUMS
Host runs on the client, and retrieves the mapfiles from the database.

To setup this mode, one installs GUMS Admin on one machine, and GUMS Host on all gatekeepers.
The gums-admin.properties should be set to direct: this will make GUMS admin run the command
implementation directly on the machine, without contacting a service to run the command. For this
purpouse, GUMS admin will need the gums.config and hosts.config configuration files properly set in
GUMS/etc. On GUMS Host, one set gums-admin.propetties to direct also, and prepares a db.propetties
file with the database configuration. GUMS Host would contact the database to retrieve the map, instead
of contacting the GUMS Service. Notice that the db access should be different from GUMS Admin and
GUMS Host to avoid spreading critical information.

At this point, this mode is discouraged: it was the first one to be developed, since historically GUMS was
created to managed the maps of a whole site. It is discouraged because it needs server-side changes to
change mode. There is a better intermediate solution, which is the following.

2 1/2 GUMS Service and grid-mapfile cache

This is an hybrid between 2 and 3, and it's intended as a passage from a system that has 3 implemented
and wants to go to 2, or viceversa. In this mode, there is a GUMS Service that updates the database
containing the maps for the whole site. A gatekeeper can retrieve the map from the database instead of
from the GUMS Service directly.

To setup this mode, one sets up a normal GUMS Service, and runs "gums mapfile-refresh”" within a cron
job. The gatekeeper setup is as in 3.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.9

1.9 FAQ 36

Frequently Asked Questions

General

1. What is GUMS?
2. Is GUMS being used in production anywhere?

3. I hear GUMS allows you to have different mappings on different gatekeeper. Why do you want to do
that? Doesn't it complicate things?

Using GUMS

1. Does GUMS have to run at root?

Building GUMS

Comparing GUMS with other tools

1. What's the difference between GUMS and VOMS (or VOMRS)?
2. What's the difference between GUMS and using grid-mapfiles?
3. What's the difference between GUMS and edg-mkgridmap?

4. What's the difference between GUMS and LCMAPS?

General

General
What is GUMS?

GUMS is a Grid Identity Mapping Service that manages how Grid identities (i.e. certificates) are
mapped to local identities. It's main two functionalities are creating grid-mapfiles and mapping a
single user for a specific server. It's intended for a site that have multiple gatekeepers and wants to
enforce a policy defining who has access to those resources and with what account. You can say
things like: "on all the nodes that match *.expl.site.otg, the users defined in group 'admin’ in the
'ATLAS' VO are going to be mapped to a group account 'adminAtl1', while all the other users
defined in the 'ATLAS' VO are to be mapped to their local account”.

Is GUMS being used in production anywhere?
Yes, GUMS is being used at BNL for RHIC and ATLAS gatekeepers.

I hear GUMS allows you to have different mappings on different gatekeeper. Why do you want to
do that? Doesn't it complicate things?

It's not that I want to... it's that I have to. At BNL, first, we have different gatekeepers for different
experiment which have different needs. Plus, each experiment might have some gatekeepers in

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.9 FAQ 37

productions, and some other in testing, and require slightly different configuration. Then comes
troubleshooting: the time in which a user claims he cannot do a certain operation, and you might
want to temporarily change your (the admin) mapping to his. Then comes the time in which you
want to experiment with a new policy. All of these could be solved by using attributes within the
VO servers, or by other tricks, which have the tendency of not being here right now. GUMS actually
helps in keeping the mapping identical at all gatekeepers: this is what we generally want to do at
BNL and one of the reason we wanted GUMS. But we still need to cope with the "irregularities”
that a production environment has.

Using GUMS

Using GUMS
Does GUMS have to run at root?

No.

It will run as any user you will be running the tomcat server as.

Building GUMS
Building GUMS

Comparing GUMS with other tools

Comparing GUMS with other tools
What's the difference between GUMS and VOMS (or VOMRS)?

First of all, GUMS is a site tool while VOMS is a VO tool: you have a BNL GUMS, and you can
have an ATLAS VOMS. A VO uses VOMS to keep a list of members, and their role within the
organization. A site uses GUMS to maintain the mapping between GRID credentials (certificates)
and local site credentials (i.e. UNIX accounts).

GUMS can contact VOMS to retrieve the list of VO users that needs a certain mapping. For
example, you can say: all ATLAS members should be mapped to the "atlas" account. GUMS would
contact the ATLAS VOMS server to know who are all these ATLLAS members.

What's the difference between GUMS and using grid-mapfiles?

Using grid-mapfiles by itself is typically good only in testing environments. Usually one generates
them with an external tool depending on the information present in the VO servers. For example,
an external tool would contact the ATLAS VO, download the list of current users, and add them to
the grid-mapfile.

GUMS can be used to generated grid-mapfiles, though it can also be used to replace grid-mapfiles.
In that configuration, the gatekeeper contacts GUMS directly when it needs a mapping, instead of
looking to the file

What's the difference between GUMS and edg-mkgridmap?

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.9 FAQ 38

Edg-mkgridmap and GUMS host tool both create a grid-mapfile for a host. The first connects
directly to the VO servers to retrieve the members and generates the map. The second is going to
contact the GUMS server to retrieve an already prepared grid-mapfile.

GUMS gives a way to centrally manage grid access and the mapfile generation. The policy you can
write in GUMS is also richer than the one in edg-mkgridmap. You can also use GUMS for both
grid-maptfile generation and in conjuction with a gatekeeper (or service) callout. For a small site with
a simple configuration, edg-mkgridmap might be a simpler solution. For a bigger site, with a more
complicated environment, GUMS will give you more control and flexibility.

What's the difference between GUMS and LCMAPS?
WARNING: I am not an expert in LCMAPS. This is my understanding of the differences.

The short (and not 100% precise) answer is: GUMS is a Policy Decision Point while LCMAPS is a
Policy Enforcement Point. The longer answer is: GUMS allows you to set a policy at the site level
for all your gatekeepers or resources. It's a service that sits there and receives questions like: "Who
should I map this guy tor". It doesn't actually enforce the mapping. In fact, GUMS by itself is
useless if there isn't anything else that contacts to either retrieve a grid-mapfile or to request a
specific mapping. The GUMS server is associated with clients that do that (i.e. the GUMS host
tools, or the gatekeeper callout).

LCMAPS, instead, is inside the gatekeeper (or the gridftp server), it implements the callout, it
decides and enforces the mapping. But there is one of them for every gatekeeper. There is no central
mapping, no central policy. You configure each gatekeeper individually.

They are two different thing, even though they both implement some similar functionalities. And,
also, there is no reason why LCMAPS can't be the PDP for GUMS (i.e. LCAMPS could connect to
GUMS as part of its decision process).

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10

1.10 CHANGES

39

Release History

Version Date Description
0.7.1 in CVS HEAD
0.7 2005-01-14
0.6.1 2004-08-10
0.6 2004-07-01
0.5 2004-05-20
undetermined before March 2004
Get the RSS feed of the last changes
Release 0.7.1 - in CVS HEAD
Type Changes By
Log names review so that they both client and carcassi
% server can stay (through links) in the same
directory.
NIS update is done every hour and is now carcassi
thread safe.
Log file permission for the command line tools carcassi
ﬁ are set so multiple users can use it (important
for admin).
GUMS host can now be used for stress carcassi
E. testing and timing the server response.
E. Added connection pooling on mysq|l server. carcassi
Solved a race condition that would make carcassi
ﬁ. GUMS hang in some circumstances.
AuthZ callout without GT3, both client and mlorch
Eu server stubs.
E. Added code for Privilege Project in GUMS carcassi

repository and build process.

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10 CHANGES

Release 0.7 - 2005-01-14

Type Changes By
Better logging: server logs all commands with ~ carcassi
ﬁ} both input and output
i a More complete command line interface carcassi
E. Web service implementation carcassi
HostWildcards can be more than one, comma carcassi
ﬁi} separated
Support for VOMS Fully Qualified Attribute carcassi
E- names
AuthZ service to be contacted by Globus carcassi
Eu callout
E. Support for grid3-user-vo- map.txt generation carcassi
E. Many many other refinements... carcassi
Release 0.6.1 - 2004-08-10
Type Changes By
E. Nightly build and reporting with Maven carcassi
@ Removed all the old code from 0.6 carcassi
Better log system: logs for developer, carcassi
ﬁ} resource admin and site admin in place
Ability to retrieve groups from within a VOMS carcassi
E- server (finally)
% No more duplication in the mapfiles carcassi
Improved database caching for grid-mapfile: carcassi
G-:E' you specify on the server which gatekeeper
maps should be generated
E. Improved error handling (i.e. a failed update carcassi

on one group doesn't block the others)

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10 CHANGES

41

Type Changes By
Installation through RPMs (cron jobs installed carcassi

E- automatically)

E. Unit tests to Grid3 VOs included carcassi

% LDAP access improved: can access LCG dev carcassi
VO

Release 0.6 - 2004-07-01

Type Changes By
E. XML configuration file for mapping policy carcassi
Log infrastructure carcassi
More flexible architecture carcassi
Decoupled grid-mapfile generation from carcassi
database caching for distribution on
gatekeeper

Web interface to generate grid-mapfiles and carcassi
map users

Better command line interfaces (feel like Unix carcassi

T @ @S @

commands)
Release 0.5 - 2004-05-20
Type Changes By
ﬁ GUMS in production at BNL carcassi
NI SMapper retrieves the GECOS field and carcassi
E. matches with certificate CN.

Architecture to allow different type of carcassi
E. mappings for different hosts

Release undetermined - before March 2004

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

1.10 CHANGES

42

Type Changes By
E- Script to fetch user from VOMS dtyu
E. Script to map user to local account tomw

©2003 BNL SITEAAA « ALL RIGHTS RESERVED

